

Progressive Education Society's

Modern college of Arts, Science & Commerce, Ganeshkhind, Pune 16 (Autonomous)

End Semester Examination March/April 2025

Faculty: Science and Technology

Program: BScGen03 Semester VI SET A

Program(Specific): B.Sc Course Type:Core Class: T.Y.B.Sc.(Mathematics) Max. Marks:35

Name of the Course: Complex Analysis Course Code: 24-MT 361
Paper No: I Time: 2 Hours

Instructions To the Candidates:

- 1. There are 3 sections in the question paper. Write each section on separate page.
- 2. All Sections are compulsory.
- 3. Figures to the right indicate full marks.
- 4. Draw a well labelled diagram wherever necessary.

SECTION: A

Q.1) Attempt any **five** of the following.

[10 marks]

- a) Show that $f(z)=exp(\overline{z})$ is nowhere analytic.
- b) Write the function $f(z) = z^2$ in the form f(z) = u(x, y) + iv(x, y).
- c) Show that $\sin(iz) = i \sinh(z)$.
- d) Evaluate $\int_0^1 (t+i) dt$
- e) Find the residue at z=0 of the function $f(z) = \frac{z \sin z}{z}$
- f) State Cauchy's Residue theorem.
- g) Find f'(z) when $f(z) = \frac{z-1}{2z+1}$.

SECTION: B

Q.2) Attempt any **three** of the following.

[15 marks]

- a) Show that the function u(x,y) = 2x(1-y) is harmonic. Also find its harmonic conjugate.
- b) Show that
 - (a) $Log(-ei) = 1 \frac{\pi}{2}i$.
 - (b) $Log(1-i) = \frac{1}{2}ln2 \frac{\pi}{4}i$.
- c) Show that $|sinz|^2 = sin^2x + sinh^2y$. Hence find zeros of sinz.

- d) Evaluate $\int_C f(z)dz$, if f(z)=z-1 and C is the arc from z=0 to z=2 consisting of
 - (a) the semicircle $z = 1 + e^{i\theta}$ ($\pi \le \theta \le 2\pi$);
 - (b) the segment $z = x \ (0 \le x \le 2)$ of the real axis.
- e) Write the principal part of the function $f(z) = \frac{\sin z}{z}$ at its isolated singular point and determine whether that point is a pole, a removable singular point or an essential singularity.

SECTION: C

Q.3) Attempt any **one** of the following.

[10 marks]

- a) Suppose that $f(z) = u(x,y) + i \ v(x,y)$ and that f'(z) exists at a point $z_0 = x_0 + i \ y_0$. Then show that the first order partial derivatives of u and v must exist at (x_0, y_0) and must satisfy the Cauchy Riemann equations $u_x = v_y$ and $u_y = -v_x$ and $f'(z_0) = u_x(x_0, y_0) + i \ v_x(x_0, y_0)$
- b) i) Find residue of $f(z) = z^2 \sin \frac{1}{z}$ at the singular point z = 0. Hence find the integral $\int_C f(z)dz$ where C is positively oriented unit circle |z| = 1.
 - ii) Let C be the arc of the circle |z|=2, from z=2 to z=2i that lies in the first quadrant. Without evaluating the integral show that

$$\left| \int_C \frac{dz}{z^2 - 1} \right| \le \frac{\pi}{3}$$

•
